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An analytical, parametric study of the attenuation of

bending boundary layers or edge effects in balanced and

unbalanced, symmetricaIIy and unsymmetrically laminat-

ed thin cylindrical shells is presented for nine contempo-

rary material systems. The analysis is based on the linear

Sanders-Koiter shell equations and specializations to the

Love-Kirchhoff shell equations and Donnell's equations

are included. Two nondimensional parameters are inden-
tiffed that characterize and quantify the effects of laminate

orthotropy and laminate anisotropy on the bending bound-

ary-layer decay length in a very general and encompassing
manner.

A substantial number of structural design technology

results are presented for a wide range of laminated-com-

posite cylinders. For all the laminate constructions con-

sidered, the results show that the differences between
results that were obtained with the Sanders-Koiter shell

equations, the Love-Kirchhoff shell equations, and Don-

nell's equations are negligible. The results also show that

the effect of anisotropy in the form of coupling between

pure bending and twisting has a neglible effect on the size

of the bending boundary-layer decay length of the bal-

anced, symmetrically laminated cylinders considered.

Moreover, the results show that coupling between the var-

ious types of shell anisotropies has a negligible effect on

the calculation of the bending boundary-layer decay

length in most cases. The results also show that in some

cases neglecting the shell anisotropy results in underesti-

mating the bending boundary-layer decay length and in
other cases it results in an overestimation.
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laminate membrane stiffnesses

modifed laminate stiffnesses defined in

Appendix B
laminate membrane-bending coupling

stiffnesses

modifed laminate stiffnesses defined in

Appendix B

first-order correction factor for

anisotropy parameter

attenuation or decay lengths
laminate bending stiffnesses

stiffness coefficients

major and minor principal lamina

moduli, respectively
lamina shear modulus

cylinder wall thickness and length

axial and circumferential bending and

twisting stress resultants, respectively
axial, circumferential, and shear

membrane stress resultants, respectively

nondimensional orthotropy parameter

loading function appearing in bending
boundary-layer differential equation
transverse-shear stress resultants

cylinder radius
constant coefficients of bending
boundary-layer differential equation

modified shear stress resultant defined in

Appendix B

strain-energy density

normal-displacement component
axial coordinate of cylinder

attenuation-length tolerance parameter

axial, circumferential, and shear

membrane strains, respectively
circumferential, angular coordinate

axial and circumferential bending and

twisting strains, respectively
constant defining different shell theories

lamina major Poisson's ratio

lamina fiber angle
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Introduction

The term, "bending boundary layer," refers to lo-

calized zones of bending stresses and deformations that

appear in practically every type of thin shell structure. _

Bending boundary layers are caused by edge support

conditions; by localized mechanical loads, heating, or

cooling; and by abrupt changes in stiffness, such as that

caused by a cutout, a crack, or a stiffener. All of these

effects may be real concerns in a given preliminary de-

sign for an advanced aerospace vehicle made of laminat-

ed-composite materials. Thus, it is useful to have

nondimensional parameters that characterize the effects

of shell geometry and laminate orthotropy and anisotro-

py on the extent of bending boundary layers and that can

be used to help guide the development of a design. For

example, an optimal design for a pressure vessel might

be one that exploits the membrane load-carrying action

of a shell and minimizes zones of local bending stresses.

Meaningful nondimensional parameters could be used at

the preliminary design stage to identify families of lami-

nates and material systems that exhibit relatively small

bending boundary layers. Moreover, a meaningful esti-

mate of the size of a bending boundary layer in a shell is

very useful for determining an adequate first-approxima-

tion finite-element model for a complex shell structure.

Without a proper understanding of the extent of a bend-

ing boundary layer, it is possible to have a finite-element

model that could miss a significant part of the structural

response in a region where failures are often initiated by

high interlaminar stresses. Furthermore, apriori knowl-

edge of the extent of bending boundary layers is useful in

determining the instrumentation locations in structural

verification tests or in material characterization tests.: In

addition, knowledge of how laminate construction af-

fects the extent of a bending boundary layer is useful for
understanding how nonlinear prebuckling deformations

affect the buckling behavior of cylindrical shells.

Studies of the behavior of axisymmetric, bending

boundary layers in right-circular, cylindrical shell struc-

tures made of orthotropic or anisotropic materials and
with finite length have been presented, to at least some

extent, in Refs. 1 through 13. In the discussion that fol-

lows, reference is made to unbalanced and balanced lam-

inates that are either symmetrically or unsymetrically
laminated. Herein, the term unbalanced laminate is used

to indicate that coupling between pure extension or con-

traction and shearing is present in a laminate.' The term

unsymmetric laminate is used to indicate coupling be-

tween any of the components of bending action with any

of the components of membrane action. A fully anisotro-
pic laminate would include both of these types of anisot-

ropy in addition to the anisotropy that is manifested by

coupling between pure bending and twisting action that

is sometimes exhibited by balanced, symmetric lami-
nalcs,

In Ref. I, an analysis is presented and an expression

for the attenuation or decay length of the bending bound-

ary layer for a specially orthotropic cylinder that is sub-

jected to edges loads, internal pressure, and heating is

given. These equations, and the accompanying results,

are based on the linear Love-Kirchhoff shell equations.

In Ref. 3, an analytical solution that is based on Don-

news simplifications to the linear Love-Kirchhoff shell

equations is given for fully anisotropic cylinders that are

subjected to lateral pressure and edge loads. Results that

show the effect of laminate anisotropy on the edge mo-

ment are presented for a clamped two-ply shell that is

subjected to internal pressure. In addition, a discussion

is presented that suggests that solutions that are based on

Donnell's equations should be accurate for laminates

that are not highly anisotropic. An analytical study of

bending boundary layers in unbalanced, symmetrically

laminated cylinders, that is also based on Donnell's

equations, is presented in Ref. 2. The aim of this study
was to determine a suitable gage section in a laminated-

composite tube that is to be used for a material character-

ization test. Results are presented for unidirectional, he-
lical-wound tubes.

An analytical solution for bending boundary layers

in unbalanced, symmetrically laminated and balanced,

unsymmetrically laminated circular cylindrical shells

that are subjected to internal pressure and thermal loads

is presented in Ref. 4. The solution is also based on Don-
nell's linear equations and numerical results are present-

ed for filament-wound cylinders made of heat-treated

carbon-carbon material. A study that focuses mainly on

prebuckling deformations, with bending boundary lay-

ers, in homogeneous, orthotropic and unsymmetrically
laminated cross-ply cylinders that are subjected to axial-

compression loads and lateral pressure loads is presented

in Ref. 5. The effects of the bending boundary layers on

the buckling response are examined for several laminate

constructions, but the general effects of the laminate con-
struction on the extent the boundary layers are not dis-
cussed.

A pair of complex conjugate, fourth-order equa-
tions that are based on Flugge's corresponding

equations _ and that can be solved in closed form are de-

rived for specially orthotropic, circular cylindrical shells

in Ref. 6. Moreover, eigenfunction solutions are present-

ed that include the solution for the axisymmetric bending

boundary layer and several simplifed equations are pre-

sented and their relative accuracy is analyzed. In Ref. 7,

a study of bending boundary layers in transversely iso-

tropic circular cylindrical shells is presented. This study
examines the attenuation characteristics of bending
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boundarylayersbyapplyinganasymptoticmethodtothe
linear,three-dimensionalelasticityequations,andpre-
sentsorder-of-magnitudeestimatesforthestressesand
displacementsforawiderangeofratiosofthetwoprin-
cipalelasticmoduli.InRef.8,ananalyticalsolutionfor
anunbalanced,unsymmetricallylaminatedcircularcy-
lindricalshellthatissubjectedtointernalpressureis pre-
sentedthatisbasedonavariantof theLove-Kirchhoff
shelltheory,whichusesanexpressionforthechangein
surfacetwistthatwasgivenbyTimoshenko.Numerical
resultsarealsopresentedforatwo-plyshellthatdemon-
stratethecouplingeffectsof theshellanisotropies.

Thebendingboundarylayersofanunbalanced,un-
symmetricallylaminatedcircularcylindricalshellthatis
subjectedtoaxialcompression,torsion,orthermalload-
ingareinvestigatedinRef.9. Resultsarealsopresented
thatdemonstratethe couplingeffectsof the shell
anisotropies.In addition,resultsarepresentedfortwo
moreconventionalunsymmetriclaminatesandatypical
quasi-isotropiclaminate.In Refs.10and11,bending
boundarylayersarealsoexaminedfor balanced,sym-
metricallylaminatedandbalanced,unsymmetrically
laminatedcylindricalshells,in thecontextofnonlinear
prebucklingdeformationsthatoccurasaresultofcom-
pressionandthermalloads.Inparticular,theeffectsof
laminatestackingsequenceontheextentandcharacter
of thebendingboundarylayersarepresentedfortwo
groupsofthreesimilarlaminates.Twoofthelaminates
areunsymmetric.InRef.12,alinearanalysisispresent-
edthatfocusesmainlyonbalanced,symmetricallylami-
natedcylinders,andanexpressionisgivenforthelength
of thebendingboundarylayersnearthecylinderends
thatisbasedontheLove-Kirchhoffshellequations.

Mostrecently,GoIdenveizer'sstatic-geometricdu-
alityprincipleZ5hasbeenusedinRef.13to reducethe
Sanders-Koiterequations_'17forfullyanisotropic,right-
circularcylindricalshellsto twocoupledfourth-order
equationsthatuseastressandacurvaturefunctionasthe
unknown,primaryfieldvariables.Thereductionisdone
byaddingcertainnegligiblysmalltermsto thestress-
strainrelations,whichareintrinsicallyinerrorbecause
theymustbeestablishedexperimentally.Theapproach
demonstrateshowthestatic-geometricdualityprinciple
canbeusedtoreducegreatlytheamountofalgebraneed-
edtoobtainresults.Eigenfunctionsolutionsarealsopre-
sentedfor speciallyorthotropiccylindersthatarein
agreementwithcorrespondingresultspresentedinRef.
6.Moreover,asymptoticformulasthatcanbeusedtode-
termineaxisymmetricbendingboundarylayerattenua-
tionlengthsandthedecayof otherunsymmetric,self-
equilibratededgesloadsaregiven.

WiththeexceptionofRef.13,explicitexpressions
forestimatingthesizeofaxisymmetricbendingbound-

arylayersinfullyanisotropic,right-circularcylindersare
notfoundintheliterature.Morcover,thereappearstobe
evenfewerrcsultsforlaminated-compositeshellsmade
of contemporarymaterialsystemsandessentiallyno
substantialparametricstudies.Thepresentpaperfocus-
esondevelopingmeaningfulestimatesof attenuation
lengthsofbendingboundarylayersinbalancedandun-
balanced,symmetricallyandunsymmetricallylaminated
circularcylinders.Theanalysisisbasedonthelinear
Sanders-KoitershellequationsandcontainstheLove-
Kirchhoffshellequations_andDonnell'sequations_as
specialcases,andis somewhatsimilarto theanalyses
presentedbyReuter_andChaudhuri,et.al.s Withthese
equations,explicitexpressionsareobtainedandnondi-
mensionalparametersarepresentedthatcharacterizethe
effectsof cylindergeometryandlaminateconstruction
onthesizeofabendingboundarylayerinaverygeneral
manner.Inparticular,genericdesigncurvesarepresent-
edthatusethenondimensionalparameterstoshowthe
effectsof laminateorthotropyandanisotropyontheat-
tenuationlengthinaconciseandencompassingmanner.
Inaddition,valuesoftheseparametersarepresentedfor
averywiderangeoforthotropicandanisotropiclaminate
constructions.Also,differencesintheresultsthatwere
obtainedinthepresentstudybyusingtheSanders-Koiter
shellequations,theLove-Kirchhoffshellequations,and
Donnell'sequationsarediscussed.

Theordinarydifferentialequationthatgovernsthe
axisymmetricbendingbehaviorofaright-circularcylin-
derthatissubjectedtoedgeloadsordisplacementsand
surfacetractionsisobtainedbyfirstspecializingthelin-
earSanders-Koitershellequations,thataregiveninAp-
pendixA, for axialsymmetry.For theequations
presentedherein,x and0 denotetheaxialandcircum-
ferentialcoordinatesofaright-circularcylinder,respec-
tively,andthe specializationto axial symmetryis
obtainedbyeliminatingalltermsintheequationsthatare
differentiatiedwithrespecttothecircumferentialcoordi-
nate,0. Theresultingsetofequationsforaxisymmetric
behavioraregiveninAppendixB.Theordinarydiffer-
entialequationthatgovernstheaxisymmetricbending
behaviorof aright-circularcylinderthatissubjectedto
edgeloadsordisplacementsandsurfacetractionsisde-
rivedinAppendixBandisgivenby

"1

d4Wdx4 + 4S_ + 4Qw = P(x) (1)

where S, Q, and P(x) are defined in Appendix B by Eqs.
(B55), (B56), and (B57), respectively, and w(x) is the

radial deflection that is positive-valued when outward.
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The coefficients of Eq. (1) depend on the subscripted A,
B, and D constitutive terms of classical Love-Kirchhoff-

type laminated shell theory (e.g., see Rcf. 18, pp. 190-

202) and the radius of the cylinder middle surface, R.

To determine the specific form of the solution to

Eq. (1), it is useful to examine the positive-definiteness

conditions on the strain-energy density function. The

strain energy density function for this problem is given

by

2U = N_t_° + Noea + Nx0_O + M,K'_ + M_o_:_0 (2)

where N_, N 0, and Nx0 are the membrane stress result-

ants; M_ and M_0 are bending stress resultants; ex°, eg,

and _0 are the middle-surface membrane strains; and

_o and _°_o are are middle-surface bending strains. By

using Eqs. (B22), (B23), and 0328), the strain-energy

density function is expressed as

2U = N,a, ° + NoEg + T_o + M,K ° (3)

The strain energy density is expressed in terms of the

strains and constitutive terms by using the constitutive

equation given by Eq. 0329); that is,

U=½_eg_ A,2A22X26B,2[</a_ _,

_,_xJ B,, B,2 B,6 DH]k_:, )

(4)

The stiffness terms in Eq. (4) that have overbars are

defined by Eqs. 0331) - 0335) and are functions of the

shell wall thickness-to-radius parameter, h/R. By

enforcing positive definiteness of the strain energy den-

sity function (e.g., see Ref. 19), the requirement that the

diagonal terms A u, A22, _66, and D H be positive-val-

ued is obtained. Moreover, the following determinants

are positive valued

JAil Al2At2 A22 = AHAz2-A]2 > 0 (5)

All AI2 _16 I
A,2 A22 _26 = (AtlA :.2 - A22)_(66 -

16 _26 _66

2
A |1_26 - A 22_26 + 2A I:_ 16_26 > 0 (6)

Likewise, positive definiteness of the strain energy den-

sity function also requires that the determinant of the

constitutive matrix in Eq. (4) be positive-valued. More-

over, by rearranging the strain energy density function
into the form

k'q) B,, 1_,_ B,, O,,lk_:]

(7)

the following additional positive-definiteness condition
is obtained

All m|6

AI6A66 =A11_66-_'216>0
(8)

The homogeneous solution for Eq. (1) involves the

square root of the quantity Q - S". By using Eqs. 0355)

and (B56), this quantity is given by

Q_S 2= 4CIC 3-C_
16C_ (9)

Substituting Eqs. 0341) - 0343) into Eq. (9) and simpli-

fying, the quantity Q - S2 is found to be given by

AH Al: _L6 BH
A12 A:: _26 Bl2
_ 16 _26 _(66 _16

Bll Bl2 1_16Dll

(lO)

It follows logically, that Q - S-" > 0 because the posi-

tive-definiteness of the strain energy density function

requires that the determinant in Eq. (10) be positive val-

ued. Moreover, Q - S" > 0 implies that Q > 0, and Q >

c3
0 implies that _ > 0. Equations (6), (8), and 0343)

indicate that C 3 > 0. Thus, _ > 0 yields the condition

that C t = Dice> 0 (see Eqs. (B49) and 0350)). Because

Dr, > 0, e > 0. To enunciate the positive valuedness of

Q, it is convenient to introduce the expression

T'- = Q- 1 (11)
4R2_:2D _e

such that T: - S: > 0, and to express Eq. (1) as

d_w d-'w
+ 4S-d_- - + 4T-'w = P(x)dx _ (12)

Equation (12) is a linear, fourth-order, nonhomoge-
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ncous ordinary differential equation with constant coef-

ficients. The characteristic equation of Eq. (12) is given

by

_,_+ 4S L 2+ 4T 2= 0 (13)

Using the knowledge that T 2 - S2 > 0, the roots of the

characteristic equation are obtained from the quadratic

formula; that is,

2_-2(_s+_, (14)

where i = dL--i- . Solution of this equation for _ yields

four roots of Eq. (13) that are pairs of complex conju-

gates that are given by

_+iT,m ) (15)

Formulas for the Attenuation Lcn,,tg_h

Formulas for the attenuation or decay length of the

bending boundary layers are obtained by first noting that

the response quantities for the region near x = 0 are

bounded by the two functions + F,e - T4TzX-s_ and that the

response quantities for the region near x = L are bounded

by the two functions + F3e - r'/C_-s(L-_). Let d denote the

length for which the solution attenuates or decays to a

value of _: times the amplitude F l or F 3. A reasonable es-

timate of the attenuation length or decay length d is ob-

tained by replacing x and (L- x)with d in the

exponential terms of Eq. (16b), and by noting that the

amplitude of w(x) is attenuated by the exponential terms.

Thus, the attenuation length or decay length is given by

e-'/w_u=e which yields

d = - Inc (T - S) -u2 < L (17)

The homogeneous solution of Eq. (12) can be writ-
ten as follows

w.(x) = K,e -4w_x sin[v +S x+Kz]+

K3e- T'/V -S0--"sin[ x+K4] (16a)

where x _ [0,L]. The symbols K_, K 2, K3, and K 4 are

real-valued constants that are determined from the

boundary conditions given by Eqs. (B18) and (BI9).
The solution given by Eq. (16a) represents a damped,

oscillatory response that decays from each end of the

cylinder. The regions near the edges of the cylinder,

where the amplitude of wH(x) is the largest are called the

bending boundary layers. All response quantities that

By using Eqs. (B55) and (11), Eq. (17) is expressed as

d _ d ° A (18)
R_-_ - d-_

where d ° is the attenuation length, in which anisot-

ropy is neglected, that is given in nondimensional form

by

d ° Ine 0 (19)

The symbol h is the shell wall thickness, and 0 and ...4

are nondimensional orthotropy and anisotropy parame-
ters or factors, respectively, that are given by

exhibit bending boundary layers involve derivatives of

l u4

12 AlIDLl ,]
Eq. (16a) and can be expressed in the general form 0 = (AiiAn -A__- "_)h']

F(x) = F_e-'dVVsx sin[ T,/Tf-g x + F2] +

F_e- T4_q-s_L-_'sin[ T,/C_ x +1=4] (16b)

where F_ through F4 are constants.

When the length of the bending boundary layers are

less than half of the cylinder length, which is typical,
Eqs. (16) can be partitioned into one part that applies to

the edge x = 0 and the other that applies to the edge x =

L. The response quantities for the region near x = 0 are

obtained by setting F_ = 0 in Eqs. (16). Similarly, the

response quantities for the region near x = L are obtained
by setting F, = 0 in Eqs. (I6).

(20a)

(20b)

where the symbols in these equations are defined in

Appendix B.

Other useful forms of Eq. (20a) are obtained by in-

troducing an effective membrane Poisson's ratio

A _ , which is the geometric mean of the two
Vm----_

Poisson effects associated with the inplane principal di-

rection of a homogenized orthotropic material. By using

5

American Institute of Aeronautics and Astronautics



this effective membrane Poisson's ratio, Eq. (20a) is ex-

pressed as

(21)

For a single-layer of homogeneous, specially orthotro-

pic material, Vm = _ ,,4 = 1, and

1/4

(22)

which, when substituted into Eq. (19), yields results

identical to the results presented by Kraus _, where the

decay tolerance is given by e = e". Likewise, for a sin-

gle-layer of isotropic material with an arbitrary thick-

ness, vm = v, ,4 = 1, and

1 (23)
0 - _/__ v2)

A 90%-decay length (¢ = .1) that is a good approxima-

tion to the behavior of homogeneous, metallic shells is

given by _- = 1.79 . Applying this formula, for

example, to the Space Shuttle solid rocket booster
described in Refs. 20 or 21 (R = 72 in., h= 0.5 in.) gives

d ° =0.15 R= I0.8 in.

It is interesting to note that the differences between

the attenuation lengths that are based on the Sanders-

Koiter, the Love-Kirchhoff, and Donnell's equations ap-

pear in the coefficient e and in the symbols with over-

bars in Eq. (20b) for the anisotropy factor A (see Eqs.
0322), 0331) - 0335), and 0345) - 0349). For these equa-

tions, the Sanders-Koiter theory is given by t-t = -_ and

the Love-Kirchhoff theory is given by I.t = 1. Donnell's

equations are given by l-t= 0. For isotropic and specially

orthotropic cylinders, "4 = 1 and the three sets of shell

equations yield identical results. Similarly, for antisym-

metric cross-ply cylinders (A,6 = A26 = D_6 = D26 = BL6=

B26 = Bi2 = B66 = 0)

z 1/4 ] -1/2
A= 1- nT, ] [1- A,,n,, (24)

A,,D. j l '/(A "A u- A]')(A "D" - s _')

and the three shell theories yield identical results.

Simplified Formulas for

For balanced, symmetrically laminated cylinders,

the only anisotropic constitutive terms are D_ and D_,

and the anisotropy factor is given by ,4 = _ where

e=l (25)

For thin-shell theories, such as the Sanders-Koiter the-

ory and the Love-Kirchhoff theory, h < 2_" This result

suggests that a useful approximation to Eq. (25) and the

anisotropy factor can be obtained from a power series

expansion for small values of -_. This process yields

_2[h_2 D2,6
(26)

D_ 62

In this expression, O<la_<_ and 0<
< 1

- A_l,h 2 - .

Thus, the approximate formula for .4 indicates that for

most practical applications of thin-shell theory, the dif-
ferences between the three different shell theories con-

sidered herein, and the effect of the flexural anisotropy

of a general symmetrically laminated cylinder, are negli-

gible.

A simplified formula for the anisotropy factor can

be derived for the general expression for ,4 that is given

by Eq. (20b). For this case, the following power series

expansions for small values of _ are used

, (27)

(.)'II,2 = a_z+ am + a2,2 _ + "" (28)

a2_ = a_ + au2 + a222 + "" (29)

a:, =a_+a,:_(h) +a::,(h)_+--. (30)

B2, =b2,+ bm(h)+ b._.,(h) '+ - (31)

Substituting Eqs. (27) - (31) into Eq. (20b) and expand-

ing the resulting expression in a similar manner yields

A=Ao+ A,(h)+ A:(h)"+ ' (32)
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ThecoefficientA 2 is a very complicated expression, and

as a result, the following first-order approximation of A

is used herein; that is,

(33)

where A o is the value of Eq. (20b) with la = 0, which is

the anisotropy factor that corresponds to the use of Don-

nell's equations. This expression is given by

'1 '1"A° = [ (A"A" - A"') az_e0] IA,, _] (34)

In this expression, a2_ and b_ are obtained from Eqs.

(B45) - (B48) by setting I.t = 0 in Eqs. (B31) - (B35).

The expression for eo is obtained from Eq. (B49) in a

similar manner. The term C_ represents a first-order

correction to the results that correspond to Donnell's

equations and is given by

where the terms that appear in Eq. (35) are given in

Appendix C. In addition, further simplifications to A 0

and Ct are also presented in Appendix C for unbalanced

and balanced, symmetric laminates and for balanced,
unsymmetric laminates, that include the subclasses of

general antisymmetric laminates, antisymmetric cross-

ply laminates, and antisymmetric angle-ply laminates.

The relative size of C_ and its contribution to Eq. (33)

are examined parametrically in the subsequent section

of the present study.

Results and Discussion

Equations (18) and (19) form the basis for the para-

metric study presented herein. In particular, the two

equations isolate the contributions of shell orthotropy

and shell anisotropy to the bending boundary-layer de-

cay length with nondimensional parameters and imply

the generic design-chart representations that are illustrat-

ed in Figs. I and 2. In Fig. I, generic results are present-
ed that show the nondimensional, 90%-decay length

given by -_h as a function of the orthotropy pa-
!e _1) i

rameter 0, for selected values of the anisotropy parame-

ter A. A 90%-decay length was selected herein to yield

an accuracy that is approximately to within the accuracy

of the experimentally determined material properties, but

other values could be used.

In a manner similar to Fig. I, Fig. 2 shows the non-

dimensional, 90%-decay length as a function of the

anisotropy parameter A, for selected values of the orthot-

ropy parameter O. Results that correspond to balanced,

symmetrically laminated cylinders are given by a value

of A = 1 and results that correspond to an isotropic shell

wall are indicated in the figures by the filled circle with

an ordinate value of 1.79. Overall, these two figures rep-

resent results that are applicable to a vast range of lami-

nate constructions, and provide a common basis for

comparison of regular and hybrid laminates made of dif-

ferent material systems and laminate stacking sequences.

In general, the figures show increases in the nondimen-

sional 90%-decay length with increases in either of the

orthotropy parameter 0 or the anisotropy parameter A.

In addition, the results in Figs. 1 and 2 clearly indicate

the effect of neglecting shell-wall anisotropy on the at-

tenuation length of a bending boundary layer.

The actual value of the nondimensional, 90%-de-

cay length depends on the particular values of the orthot-

ropy and anisotropy parameters of a given laminate.

Thus, additional results are presented subsequently that

show how the orthotropy parameter 0 and the anisotropy

parameterA vary with laminate construction. In particu-

lar, values of 0 and A are presented first for balanced

and unbalanced symmetrically laminated cylinders.

Then, values are presented for balanced and unbalanced

unsymmetrically laminated cylinders. Nine different

contemporary material systems were used to generate

these results. These material systems include boron-alu-

minum, S-glass-epoxy, a typical boron-epoxy, AS4/

3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/

5260 graphite-bismaleimide, Kevlar 49-epoxy, IM7/

PETI-5, and P-100/3502 pitch-epoxy materials. The me-

chanical properties of these material systems are present-

ed in Table 1 and the nominal ply thickness that was used
is 0.005 in.

Balanced, SymrrtctricallyLaminated Cylinders

Symmetrically laminated shell walls are character-

ized mathematically by values of zero for the subscripted

B terms that appear in the constitutive equation, Eq.
(A15). In addition, balanced, symmetrically laminated

shell walls do not exhibit coupling between extension

and shear, which is characterized by A_, = A, 6= 0 in Eq.

(A15). Shell walls of this class are strictly specially
orthotropic for many laminates. However, for some wall

constructions, balanced, symmetric laminates exhibit

anisotropy in the form of coupling between pure bending

and twisting of the shell wall. This type of anisotropy is

manifested by nonzero values of the Dr6 and D:6 consti-
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tutivetermsinEq.(AI5). However,thediscussionof
Eq.(26)thathasbeengivenhereinindicatesthatthis
typeofanisotropyisnegligibleforthinshellsandthatthe
differencesbetweenresultsobtainedfromtheSanders-
Koiter,theLove-Kirchhoff,andDonnelltheoriesarein-
significant.Moreover,A= 1 for this class of laminated-

composite shell walls, and the attenuation behavior is

governed by the nondimensional orthotropy parameter 0

that is given by Eq. (20a). Furthermore, Eqs. (18) and

(19) indicate that the attenuation length is a constant

multiple of the orthotropy parameter that depends on the

attenuation-tolerance parameter e. For this case, trends

that are exhibited by 0 are identical to those exhibited by

the attenuation length based on any value of e.

Values of the orthotropy parameter 0 are presented

in Fig. 3 for single-ply, homogeneous, specially ortho-

tropic and isotropic shell walls, with arbitrary thickness,
as a function of the ratio of the principal elastic moduli,

E2/E v For these results, the orthotropy parameter is giv-

en by Eq. (22) and is expressed in the following more
convenient form

(36)

One curve, that is essentially several coincident curves,

is shown in the figure that corresponds to general results

for 0.2 < v_2< 0.35 . In addition, specific results for the

nine material systems considered herein and for a typi-

cal aluminum and a steel are indicated in the figure by

the square symbols. The results in Fig. 3 indicate that

the effect of variations in the major Poisson's ratio on

the orthotropy parameter O are small compared to the

effect of variations in the ratio of the principal elastic

moduli. Moreover, the results show that 0 decreases

rapidly as the ratio of the principal elastic moduli
increases, particularly for values of E2/E _ less than

approximately 0.1, which corresponds to most of the

contemporary orthotropic materials considered herein.

Figure 3 also shows that an isotropic material corre-

sponds to 0- 1.

Values of the orthotropy parameter 0 for the sin-

gle-ply, homogeneous, specially orthotropic cylinders

investigated by Cheng and He _ were also obtained. A

comparison of the results obtained in the present study
with the corresponding results of Ref. 6 are presented in

Table 2 for boron-epoxy, glass-epoxy, and graphite-ep-

oxy materials and for the cylinder radius-to-thickness ra-
tio R/h = 208.31 I. Moreover, a range of results is shown

for Ref. 6 which corresponds to various simplifications

that were used in the equations that govern the response.

The actual material properties that were used are given in

Ref. 6. In this table, the quantity used for comparison is

given by

which is the real part of the exponent p that appears in

the eigenfunction solution used by Cheng and Ho (n = 0

in Eq. (25) of Ref. 6; see also Eq. (47) of Ref. 13), which

corresponds to the decay or attenuation of the response.

The orthotropy parameter shown in Eq. (37) is defined

by Eq. (36). The results in Table 2, show very good

agreement (less than 1% difference) for all three materi-
als. In addition, the results obtained herein that are

shown in Table 2 for the boron-epoxy material are also

in excellent agreement with the corresponding results

presented by McDevitt and Simmonds. 13

Values of the orthotropy parameter 0 are presented

in Fig. 4 for multilayered [(-----0)m]slaminates made from

the nine material systems as a function of the fiber angle

0, which is measured from the x-axis toward the 0-axis.

The results are independent of the stacking sequence

number m and show a wide variation in 0 with the ma-

terial system. The results also show, for the most part, a

wide variation in 0 with the fiber angle _ and show a re-

duction in 0 as the fiber angle increases from zero to

ninety degrees. The largest value (2.93) and the smallest

value (0.34) of 0 are exhibited by the unidirectional

laminates made from P-100/3502 pitch-epoxy material,

and correspond to values of _-_ _-o_ equal to 5.13 and

0.59, respectively. Moreover, the greatest variation in 0

with the fiber angle (approximately 8.7 times) is exhibit-

ed by the laminates made from P-100/3502 pitch-epoxy
material. The smallest variation is exhibited by the lam-
inates made from the boron-aluminum material.

Results are presented in Fig. 5 that show the values

of the orthotropy parameter for [(±45/02)m] s, [(02/-45)m] s,

[(±45/902)m]s, [(902/±45)m]_, [(±45/0/90)m] S and [(0/90/

+45)m]_ laminates made of IM7/5260 graphite-bismale-

imide material for values of the stacking sequence num-

ber m = ! to 6. Values of O range from approximately

1.53 to 0.64. These results show that the curves for the

[(___45/02)rn]s and [(0:1__.45),_]s laminates approach O =

1.41 as m increases to a value of 6, with the curve for the

[(02/__.45),,] _ laminates converging from above and the

other curve converging from below. The higher values

of 0 for the [(02/±45),,] _ laminates, are attributed to the

higher axial bending stiffness that is obtained by placing

the zero-degree plies at the outer surfaces of the lami-
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natcs, particularly, fl)r the lower values of the stacking
sequence number m. Similarly, the resulis in Fig. 5 show

that the curves for the [(+--45/902)mk and [(902 I+45)m] _

laminates approach O = 0.76 as m increases to a value

of 6, with the curve for the [(_+45/902)m] _ laminates con-

verging from above and the other curve converging from

below. Likewise, the results in Fig. 5 show that the

curves for the [(+45/0/90)m] _and [(0/90/-+45)m] s quasi-

isotropic laminates approach O = 1.03 as m increases

to a value of 6, with the curve for the [(0190I+_45)js lam-

inates converging from above and the other curve con-

verging from below.

Overall, the results in Fig. 5 indicate that the {(__.45/

02)m] s and [(02/-45)m] s laminates exhibit higher vaIues of

the orthotropy parameter than the [(±45/0/90)m] sand [(0/

90/-45)m]s quasi-isotropic laminates, which exhibit

higher values of the orthotropy parameter than the [(_+45/

902)m] _ and [(902/-+45),,] _ laminates. This trend corre-

sponds to a reduction in the value of 0 as the axial bend-

ing and extensional stiffnesses of the laminates decrease.

Results are presented in Fig. 6 that show the effect

of the nine material systems considered herein on the

orthotropy parameter for the [(02/-+45)m] _ laminates.

Values of 0 range from approximately 1.67 for P-100/

3502 pitch-epoxy material to 1.09 for boron-aluminum

material. Most of the materials exhibit values of 0 in the

range of approximately 1.4 to 1.6. All of the curves show

about the same reduction in 0 as the stacking sequence

number m increases.

Results similar to those in Fig. 6 are presented in

Fig. 7 that show the effect of the nine material systems

on the orthotropy parameter for the [(__.4510/90),,]_ and

[(0/901_45),,] _ quasi-isotropic laminates. These results

show a much smaller variation in the orthotropy param-

eter with material system and stacking sequence number

for the quasi-isotropic laminates than for the [(02/+-45)m] _

laminates in Fig. 6. In particular, values of O for the qua-

si-isotropic laminates range from approximately 1.15 to

1. The largest values of O in Fig. 7 are exhibited by lam-

inates from P-100/3502 pitch-epoxy material. More-

over, the results show a larger variation in 0 with

stacking sequence number for the [(0/90/±45)m] s lami-

nates than for the [(-45/0/90)m] s laminates.

Unbalance_t, Symmetrically Laminated Cylinders

Unbalanced, symmetric laminates exhibit anisotro-

py in the form of extensional-shear coupling ( Al6 :_ Az6

0) in addition to flexural anisotropy (Dr6 ¢: D26 ¢ 0 ).

For these laminates, the value of the anisotropy parame-

terA given by Eqs. (20b) and (33) is not equal to unity.

Simplifcd expressions fi)r the anisotropy parameter _

and the first-order corrcction factor Cv defined by Eqs.

(33) - (35), are given by Eqs. (C23) and (C24), respec-

tively. Equation (C24) indicates that the value C_ de-

pends on coupling between the membrane and flexural

anisotropies.

Values of the orthotropy parameter O for [(+_).'m]_

symmetric, unidirectional laminates for the nine material

systems considered herein are also presented in Fig. 4;
that is, the curves presented in Fig. 4 for the [(--+_)m]_sym-

metric angle-ply laminates are identical to those for the

corresponding [(+_)2m]_ symmetric, unidirectional lami-

nates. Thus, the orthotropy behavioral trends for the un-
directional laminates are identical to those discussed

previously for the symmetric angle-ply laminates, and

are also independent of the stacking sequence number
m.

Results for the anisotropy parameter ,4o and the

first-order correction factor C_ are shown in Figs. 8 and

9, respectively, for the [(+_b),m]_symmetric, unidirection-

al laminates with the nine material systems considered

herein and are independent of the stacking sequence

number m. The results in Fig. 8 show a substantial vari-

ation in ,40 with fiber orientation and with material sys-

tem. The results show that A 0 is the most pronounced

for values of the fiber angle _b between approximately

55 deg and 80 deg, and that the contribution of the anisot-

ropy to the attenuation behavior is essentially insignifi-

cant (less than 1.05) for values of q_< 25 deg and _ > 85

deg. Moreover, the largest variation in A 0 with fiber an-

gle is exhibited by the laminates made of the P-100/3502

pitch-epoxy material and the smallest variation is exhib-

ited by the laminates made of boron-aluminum material.

Values of Ao range from approximately 1.42 for the max-

imum point on the curve for the P-100/3502 pitch-epoxy
material to a value of 1.

The results shown in Fig. 9 for the first-order cor-

rection factor Ct for the [(+_).'m]_ symmetric, unidirec-
tional laminates indicate a substantial relative variation

in C_ with fiber orientation and with material system, but

all of the magnitudes of C_ are less than approximately

0.45. Moreover, the magnitude of Ct is less than approx-

imately 0.2 for all of the materials except the P- 100/3502

pitch-epoxy material. For the upper bound of thinness of

thin-shell theory, given by h/R = 1/20, the contribution of

C_ to the anisotropy factor defined by Eq. (33) is practi-

cally negligible. Equation (C24) indicates that the insig-

nificance of C_ means that the coupling of the membrane

and flexural anisotropies are negligible for these lami-

nates. The insignificance of Ct is illustrated and verified

in Fig. 10 for the [(+_)'.m]_ symmetric, unidirectional
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laminatesmadeofIM7/5260graphite-bismaIcimidema-
terial(blackcurves)andmadeof P-100/3502pitch-ep-
oxymaterial(graycurves),forh/R= 1/20.Thefinely
dashedcurvesshowninFig.10correspondto90%-de-
caylengthsfor whichtheanisotropyis neglected.In
contrast,thesolidcurvesandthecoarselydashedgray
curveincludetheeffectofthemembraneanisotropyand
areshownforvaluesoftx=0, I, and1.5.Fortheseval-
ues,resultsthatcorrespondtotheSanders-Koitertheory

andtheLove-Kirchhofftheoryaregivenbyt.t=3 and

I.t= 1,respectively.ResultsthatcorrespondtoDonnell's
equationsaregivenby IX=0. ThesolidcurvesinFig.
10forl.t= 1and1.5arebasedontheexactsolutionthat
usesEq.(20b)fortheanisotropyfactor.Thecorrespond-
ingcurvesthatarebasedontheapproximateformulafor
theanisotropyparameterthatisgivenbyEq.(33)are
identical.Thesolidcurvesandthecoarselydashedgray
curveindicatethatvaryingI.tyieldsasmalleffect,which
impliesthatallthreeshelltheoriesyieldessentiallythe
sameresultsandthatA-- Ao for the [(+_)2m]s symmet-

ric, unidirectional laminates. Comparing the solid and

finely dashed curves in Fig. 10 also indicates that ne-

glecting the membrane anisotropy underestimates the

bending boundary-layer decay length, by as much as ap-

proximately 31% and 21% for shell walls made of P- 100/

3502 pitch-epoxy and IM7/5260 graphite-bismaleimide

materials, respectively.

Values of the orthotropy parameter 0 for [(+452/0/

90)m] s and [(0/90/+452)m] s laminates made of the nine

material systems considered herein are also presented in

Fig. 7. More specifically, the values of 0 for these lam-

inates are identical to the values for the corresponding

quasi-isotropic laminates. Results for the anisotropy pa-

rameter A o defined by Eq. (34) are shown in Fig. 11 for

[(+45ZJ0/90)m]s and [(0/90/+452)m] s laminates made of

the nine material systems considered herein. The results

in Fig. 11 show no significant variation in A o with the

stacking sequence number m, and only a slight variation

(less than approximately 9%) with material system. Val-

ues ofA 0 range between approximately 1.1 and 1. Cor-

responding results for the first-order correction factor C_

defined by Eq. (35), that are not shown herein, were ob-

tained that indicate that all of the values of Cl for the

[(+45_0/90)m]s and [(0/90/+452)m] _ laminates are less

than approximately 0.1. These values indicate that the

contribution of Ct to the anisotropy factor defined by Eq.

(33) is practically negligible. Thus, A': A o for these

laminates. The values ofA oshown in Fig. 11 suggest that

neglecting the anisotropy would, at most, underestimate

the bending boundary-layer decay length by approxi-

mately a 10%. The insignificance of C_ also means that

the coupling of the membrane and flexural anisotropies

are unimportant with regards to the primary effect of the

individual shell anisotropies that is captured by the pa-

rameter A,.

Balanced, Unsymmetrically Laminated Cylinder_

Balanced, unsymmetric laminates may, in general,

exhibit anisotropy in the form of coupling between pure

bending and twisting (Dr6 ¢: D26 _: 0 ) and coupling be-

tween membrane and bending action, which is manifest-

ed by nonzero values for any of the subscripted B-terms

in Eq. (AI5). These laminates do not, however, exhibit
extensional-shear coupling ( AIr = Az6 = 0). For the un-

symmetric laminates that are discussed subsequently, the

first ply in the stacking sequence is the innermost ply of

a cylinder. Simplifed expressions for the anisotropy pa-

rameter A o and the first-order correction factor Ct, de-

fined by Eqs. (33) - (35), are given by Eqs. (C27) and

(C29), respectively. Equations (C28) and (C29) indicate

that the value C_ depends on coupling between the flex-

ural anisotropy and the anisotropy caused by unsymmet-
ric lamination.

Results for regular, antisymmetric angle-ply lami-

nates are shown in Figs. 4 and 12-16. In particular, val-

ues of the orthotropy parameter 0 for [(-----¢_)m]T

unsymmetric laminates made of the nine material sys-
tems considered herein are also presented in Fig. 4; that

is, the orthotropy-parameter curves presented in Fig. 4

for the [(-----O)m]ssymmetric angle-ply laminates are also

identical to those for [(___dp),,]T unsymmetric laminates.

Thus, the orthotropy behavioral trends for the [(+---_)m]T

unsymmetric laminates are identical to those discussed

previbusly for the corresponding symmetric angle-ply

laminates, and are also independent of the stacking

sequence number m.

Results for the anisotropy parameter A o defined by

Eq. (C27) are shown in Fig. 12 for 2-ply [__.d_]r unsym-

metric laminates made of the nine material systems con-

sidered herein. The results in Fig. 12 show a substantial

variation in A o with fiber orientation and with material

system, and show thatA o is the most pronounced for val-

ues of the fiber angle # between approximately 15 deg

and 60 deg. Moreover, the largest variation in A o with fi-

ber angle is exhibited by the laminates made of the P-

100/3502 pitch-epoxy material and the smallest variation

is exhibited by the laminates made of boron-aluminum
material. Values of _ range from approximately 0.75

for the minimum point on the curve for the P-100/3502

pitch-epoxy material to a value of 1. The results in Fig.

13 show the variation in _ with the fiber angle d_ and

the stacking sequence number m for [(+--q_),,,]Tunsym-
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metriclaminatesmadeof theP-100/3502pitch-epoxy
materialTheseresultsshowarapiddeclinein theim-
portanceof_, thatismanifestedbythecurvemoving
closerto_ = I, asthestackingsequencenumberin-
creases.Form=2,0.95<_ < 1.

Resultsforthefirst-ordercorrectionfactorCt are

shown in Fig. 14 for 2-ply [-(:D]T unsymmetric laminates

made of the nine material systems considered herein.

The results in Fig. 14 also show a substantial variation in

C_ with fiber orientation and with material system. How-

ever, the maximum magnitude of Ct is less than 0.07 for

all of the material systems. Results are presented in Fig.

15 that show the variation in Ct with the fiber angle qb

and the stacking sequence number m for [(--+_)m]Vun-

symmetric laminates made of the P-100/3502 pitch-ep-

oxy material. These results show significant reductions

in C_ with an increase in the stacking sequence number.

Overall, the results in Figs. 14 and 15 indicate that

the contribution of C_ to the anisotropy factor defined by

Eq. (33) is negligible for the upper bound of thinness giv-

en by h/R = 1/20, which means that A = Ao. Thus, the

results in Fig. 12 for the two-ply [-+_]r unsymmetric

laminates indicate that neglecting the shell anisotropy

overestimates the bending boundary layer, by as much as

approximately 33% and 22% for shell walls made of P-

100/3502 pitch-epoxy and IM7/5260 graphite-bismale-

imide materials, respectively. The insignificance of C_

also means that the coupling of the flexural anisotropy

and the anisotropy caused by unsymmetric lamination is

unimportant with regards to the primary effect of the in-

dividual shell anisotropies. The insignificance of C_ is il-

lustrated in Fig. 16 by the gray and by the black curves

for the laminates made of P-100/3502 pitch-epoxy and

IM7/5260 graphite-bismaleimide materials, respective-

ly. The solid black and gray curves are for the upper

bound of thin-shell theory that is given by h/R = 1/20.

The finely dashed curves shown in the Fig. 16 corre-

spond to 90%-decay lengths for which the anisotropy is
neglected. In contrast, the solid curves include the effect

of the shell anisotropy and are shown for values oftx = 0,

1, and 1.5. The solid curves for la = l and 1.5 are based

on the exact solution that uses Eq. (20b). The corre-

sponding curves that are based on the approximate for-

mula for the anisotropy parameter that is given by Eq.
(33) are identical. The solid curves indicate no signifi-

cant effect of varying I-t, which implies that all three shell

theories yield essentially the same results for the [+#]v

unsymmetric laminates. For [(+--0)m]Tunsymmetric lam-

inates with m > l and made from any of the nine material

systems considered herein, the results in Figs. 12 through

15 indicate that negIecting the shell-wall anisotropy will

have a small effect on the calculation of the bending

boundary-layer decay length.

Values of the orthotropy parameter 0 and the

anisotropy parameter _ for (0e,/901). r unsymmetric

cross-ply laminates are shown in Figs. 17 and 18 for the

nine material systems considered herein and as a func-

tion of the percentage of zero-degree plies. For this class

of laminates, Eq. (20b) simplifies to Eq. (34); that is, A=

_. This simplification means that the anisotropy param-

eter is independent of i.t, which means that all three of the

shell theories considered herein yield identical results.

The results in Fig. 17 show a large variation in O

with the percentage of zero-deg pries for most of the ma-

terial systems. In addition, the results show a large vari-

ation in 0 with material system for the laminates that are

dominated by ninety-deg plies (less than approximately
10% zero-deg plies) and by zero-deg plies ( more than

approximately 80% zero-deg plies). Values of 0 vary the

most for laminates made of P- 100/3502 pitch-epoxy ma-

terial, with values that range from approximately 0.3 to

2.93. Most of the materials exhibit values of O in the

range of approximately 0.5 to 2. I.

The results in Fig. 18 also show a large variation in

A o with the percentage of zero-deg plies for most of the

material systems, and show a large variation with mate-

rial system for laminates with less than 70% zero-deg

plies. Moreover, the results show thatA 0 is the most pro-

nounced (most different from a value of 1) for laminates

with approximately 15% to 30% zero-deg plies. The

largest variation in A o with percentage of zero-deg plies

is exhibited by the laminates made of the P-100/3502

pitch-epoxy material and the smallest variation is exhib-
ited by the laminates made of boron-aluminum material.

Values ofA 0 range from approximately 0.57 for the min-

imum point on the curve for the P-100/3502 pitch-epoxy

material to a value of 1. Thus, in some cases neglecting

the shell wall anisotropy overestimates the bending

boundary layer, by as much as approximately 75% for a

shell wall made of P-100/3502 pitch-epoxy material.

This result is illustrated in Fig. 19 by the gray curves.

Similar results are presented in Fig. 19 for (0p/90q) T un-

symmetric cross-ply laminates made of IM7/5260 graph-

ite-bismaleimide material (black curves). The solid

black and gray curves include the effect of the shell

anisotropy and the finely dashed curves shown in the fig-

ure correspond to 90%-decay lengths for which the

anisotropy is neglected. The results in Fig. 19 show that

including the effect of anisotropy is particularly impor-

tant for laminates with less than approximately 70%

zero-deg plies.

Unbalanced, Unsymmetrically Laminal_ed Cylinders

• Unbalanced, unsymmetric laminates may, in gen-
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eral,exhibitfull anisotropyin theformofcouplingbe-
tweenpurebendingandtwisting(D__ D:__ 0 ) and
couplingbetweenmembraneandbendingaction,which
ismanifestedbynonzerovaluesforanyofthesubscript-
edB-termsinEq.(A15),andextensional-shearcoupling
( Aj__ A2_,_0). Theexpressionsfortheanisotropypa-
rameterS,andthefirst-ordercorrectionfactorC_ that are

given by Eqs. (C2) - (C22) indicate that _, exhibits cou-

pling between the membrane anisotropy and the anisot-

ropy that is caused by unsymmetric lamination, and that

C_ exhibits coupling between all three types of anisotro-

pies. One family of laminates that exhibits all of these

anisotropies is the (70p/0q) T unbalanced, unsymmetric

laminates with p > 0 and q _ 0.

Values of the orthotropy parameter 0 and the

anisotropy parameter A o for (70p/0q) T unbalanced, un-

symmetric laminates are shown in Figs. 20 and 21, re-

spectively, for the nine material systems considered

herein and as a function of the percentage of seventy-deg

plies. The results in Fig. 20 show a large variation in 0

with the percentage of seventy-deg plies for most of the

material systems. The results also show a large variation

in 0 with material system for the laminates that are dom-

inated by zero-deg plies (less than approximately 20%

seventy-deg plies). Values of 0 vary the most for the

laminates made of P-100/3502 pitch-epoxy material,

with values that range from approximately 0.5 to 3.

The results in Fig. 21 also show a substantial varia-

tion in A 0 with the percentage of seventy-deg plies for

most of the material systems, and a large variation with

material system for laminates with between approxi-

mately 45% and 100% seventy-deg plies. The largest

overall variation in A o with percentage of seventy-deg

plies is exhibited by the laminates made of the P-100/

3502 pitch-epoxy material and the smallest variation is

exhibited by the laminates made of boron-aluminum ma-

terial. Values of A 0 range from approximately 1.4 to

0.95, which correspond to the maximum and minimum

points, respectively, on the curve for the P-100/3502
pitch-epoxy material.

Results for the first-order correction factor C, were

also obtained for (70p/0q) T unbalanced, unsymmetric

laminates made of the nine material systems considered

herein, but are not included in the present paper. These

results also show a substantial, relative variation in Ct

with the percentage of seventy-deg plies, but overall the

magnitude of C_ is less than approximately 0.25 for the

P-100/3502 pitch-epoxy material and less than 0.1 for
the other materials. These results indicate that the con-

tribution of Cx to the anisotropy factor defined by Eq.

(33) is negligible for the upper bound of thin-shell theory

that is given by h/R = 1/20, which means that A = ._,,.

Thus, the results in Fig. 21 suggest that in some cases ne-

glecting the shell-wall anisotropy may overestinaate the

bending boundary-layer decay length and in other cases,

may underestimate the decay length. The insignificance

of Ct also means that the contribution of the flexural

anisotropy to the coupling of the anisotropies is negligi-

ble. The insignificance of C_ is clarified in Fig. 22 for

laminates made of P-100/3502 pitch-epoxy material"

(gray curves) and of IM7/5260 graphite-bismaleimide
material (black curves). The solid black and gray curves

are for the upper bound of thinness given by h/R = 1/20.

The finely dashed curves shown in the figure correspond

to 90%-decay lengths for which the anisotropy is ne-

glected. In contrast, the solid curves include the effect of
the shell anisotropy and are shown for values of It = 0, 1,

and 1.5. Moreover, the solid curves for l-t= I and 1.5 are

based on the exact solution that uses Eq. (20b). The cor-

responding curves that are based on the approximate for-

mula for the anisotropy parameter that is given by Eq.

(33) are identical. The solid curves indicate a negligible

effect of varying It, which verifies that A --- ,'4o and im-

plies that all three shell theories yield essentially the

same results for the (70p/0q)-r unbalanced, unsymmetric

laminates. In addition, the results show that neglecting

the shell wall anisotropy, for the most part, underesti-

mates the bending boundary-layer decay length, by as

much as approximately 16% and 6% for shell walls made

of P-100/3502 pitch-epoxy and IM7/5260 graphite-bis-

maleimide materials, respectively, and with approxi-

mately 20% seventy-deg plies. In addition, the results in

Fig. 22 show that neglecting the shell wall anisotropy un-

derestimates the bending boundary-layer decay length,

by as much as approximately 31% and 20% for shell
walls made of P-100/3502 pitch-epoxy and IM7/5260

graphite-bismaleimide materials, respectively, and with

approximately 100% seventy-deg plies. There is only a

very small range shown in Fig. 22 where neglecting the

shell wall anisotropy overestimates the bending bound-

ary-layer decay length, and for this region, the effect is

negligible.

Concluding Remarks

An analytical study of the attenuation of bending

boundary layers in both balanced and unbalanced, sym-

metrically and unsymmetrically laminated-composite,

thin cylindrical shells has been presented for nine con-

temporary material systems. The analysis is based on the

linear Sanders-Koiter shell equations and contains the

Love-Kirchhoff shell equations and Donnell's equations

as special cases. With this analysis, two nondimensional

parameters have been indentified that characterize and

quantify the effects of laminate orthotropy and laminate
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anisotropyonthebendingboundary-layerdecaylength
inaverygeneralandencompassingmanner.Theanisot-
ropyparameterincludestheeffectsof anisotropyinthe
formofcouplingbetweenpurebendingandtwistingthat
appearsin manysymmetriclaminatesto someextent,
couplingbetweenextensionandshearthatispresentin
unbalancedlaminates,andcouplingbetweenmembrane
andbendingactionthatispresentinunsymmetriclami-
nates.

Asubstantialnumberofstructuraldesigntechnolo-
gyresultsfor thebendingboundary-layerdecaylength
havebeenpresentedforawiderangeoflaminated-com-
positeshellstructuresthatshouldbeusefuladditionsto
thestructuraldesigner'scollectionofpreliminarydesign
tools.Moreover,theanalysisandresultsshouldprovide
additionalphysicalinsightintothefundamentalbehavior
ofgenerallaminatedcompositeshellstructuresandpro-
videacommonbasisfor assessingbendingboundary-
layerattenuationforthevastrangeoflaminateconstruc-
tionsthatarepossible.Furthermore,theresultsshould
beusefulforthedesignofspecimensformaterialchar-
acterizationtests,forinstrumentingstructuralverifica-
tiontests,andfordefiningfinite-elementmeshes.Forall
the laminateconstructionsconsideredin thepresent
study,theresultsshowthatthedifferencesbetweenre-
sultsthatwereobtainedwiththeSanders-Koitershell
equations,theLove-Kirchhoffshellequations,andDon-
nell'sequationsarenegligible.Theresultsalsoshow
thattheeffectofanisotropyintheformofcouplingbe-
tweenpurebendingandtwistinghasaneglibleeffecton
thesizeofthebendingboundary-layerattenuationlength
ofthebalanced,symmetricallylaminatedcylinderscon-
sidered.Moreover,theresultsshowthatthecouplingof
themembraneandflexuralanisotropyandtheanisotropy
causedbyunsymmetriclaminationisgenerallyunimpor-
tantwithregardsto theprimaryeffectoftheindividual
shellanisotropiesonthebendingboundary-layerdecay
length.Theonlyexceptionencounteredwasforunbal-
anced,unsymmetricallylaminatedcylindersfor which
couplingofthemembraneanisotropyandtheanisotropy
causedbyunsymmetriclaminationisaprimaryeffect,as
expected.Theresultsalsoshowthatinsomecasesne-
glectingtheshellanisotropyresultsin underestimating
thebendingboundary-layerdecaylengthandin other
casesit resultsinanoverestimation.

Appendix A: Sanders-Koiter Eq_

The linear Sanders-Koiter shell equations t6"_7are

presented in this appendix for a right-circular cylinder

with a radius that is given by R. For these equations, x
and 0 denote the axial and circumferential coordinates,

respectively. First, the equilibrium equations are pre-

sented, then the kinematic equations and the constitutive

equations are presented. Last, the boundary conditions

are given for a complete right-circular cylinder at an

edge that is given by a constant value of the axial coordi-
nate, x.

Equilibrium Equations

The equilibrium equations are given in a form sim-
ilar to those found in Ref. 22; that is,

ON, + I 3N,o c, OM,o
_)_- - _,-ff_ + q, = 0 (A1)

ON,o I ONo c_ c20M,o
-'ff_ + _-q_ + _-Qo+ _-_-- +qo=O (A2)

OQ,+ lOQo No
_0_-- _- + q. =0 (A3)

OM, 10M,o
--0-_ + _jO- - Q, = 0 (A4)

OM,o 1 3Mo
_- + _-0-0-- Q0 = 0 (A5)

where N,, N 0, and N,o are the membrane stress result-

ants; Qx and Q0 are the transverse shear-stress resultants;

M x, M0, and M,0 are the bending stress resultants; qx, q0,

and q, are the applied surface tractions; and c_ and c2

are constants that identify the equations of other shell

theories that are considered herein. In particular, the

Sanders-Koiter equations are given by c_ = cz = 1 and

the Love-Kirchhoff equations are give by c, = 1 and c 2=

0. Donnell's equations are given by c l = c_ = 0. This

convention is used throughout the present study.

Kinematic Equations

The kinematic equations are given by

0u (A6)

1 8v
e_ = _--ff_ +_R (A7)

1 3u
_o = _ _-_7_-_ (AS)

3o _ _W

- - _ (A9)

_ = -_v - 1 _)wR-'0--0- (A 10)

c_,[0v 1 Ou_
_ = _-_- - _-_1 (A 11)
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013'; a:w
_¢"= 7fix-=- ax: (AI2)

_;;_ I O[_, c, 3v I a:w (AI3)
- R-a-o-= _a_ - R: a0:

,o _ l(al3; ) a13;..- _kqTff +13; + -a-_-

- 2_o _(c,+'c _av c_au--- + _ :/a_- _ (A14)

where u, v, and w are the axial, circumferential, and nor-

mal displacements of a point of the shell middle surface;

e_, Eg, and _xo are the membrane strains; I]_, 13_, and

13_ are the rotations; and _¢o, _¢_, and 1¢% are the bend-

ing strains. The displacement w is positive when it is

outward from the cylinder reference surface.

CQnstitutive Equations

The isothermal constitutive equations are given in

matrix form by

fN"/No

/M/Mo
M_0

A. Al. A.6!Bn B,= B 6
Alz A£ A,6::BI, Ba B,_
A,6 A26AS!B,_ B,, B2

B,:Ba B.,6{D,: D2= D26

Bi6 B:6 B66!DI6 Dz6 D_

rco'_

._e..

_o

k% ?

(A15)

where the subscripted A, B, and D terms of the matrix
are the stiffnesses of laminated composite shells that are

obtained from the Love-Kirchhoff shell theory. More-

over, the constitutive terms in Eq. (AI5) are identical to

those for laminated-composite plates that are given in

Ref. 18, p. 198.

Boundary_ Conditions

The boundary conditions for an edge that is defined

by a constant value of the axial coordinate x are given by

N, = iq,(0) or u = 5(0) (A 16)

N,0+ l(c,+ lc,)M,0='_(0) or v= V(0) (A17)

1 _M,o
Q, + _- = ¢1(0) or w = i(0) (A 18)

M, = IVI,(O) or 13_= _(0) (A 19)

where _(O), re(0), and if(0) are applied edge displace-

ments; _(0)is an applied edge rotation; and lq,(0),

_(0),_(0), and bTl,(0) are applied edge loads.

Ap_pendix B: Equations for Axisymmetry

The linear Sanders-Koiter shell equations that are

presented in Appendix A for a right-circular cylinder
with a radius R are specialized in this appendix for the

case of axisymmetric behavior. For these equations, x
and 0 denote the axial and circumferential coordinates,

respectively. The specialization to axial symmetry is
conducted by eliminating all terms in the equations of

Appendix A that are differentiatied with respect to the
circumferential coordinate, 0. First, the equilibrium

equations, the kinematic equations, and the constitutive

equations are presented. Then, the boundary conditions

are given for a complete right-circular cylinder at an

edge that is given by a constant value of the axial coordi-
nate, x. Last, the axisymmetric equations are manipulat-

ed into a single ordinary differential equation in terms of

the normal displacement w(x).

EAuilibrium E__

The equilibrium equations for axisymmetric behav-

ior are given by

dN,
dx + q'(x) = 0 (B 1)

dN_o c, c2 dM,o
dx + _Qo + 2R dx + qo(x) = 0 (B2)

dQ, No
+ q.(x) = 0 (B3)dx R

dM, Q,=O (B4)
dx

dM_o
dx Qo = 0 (B5)

where the membrane stress resultants N_, N 0, and Nx0;

the transverse shear-stress resultants Q= and Q0; the

bending stress resultants M=, M o, and M_o; and the

applied surface tractions q_, q0, and q, are functions of

only the axial coordinate, x.

Kinematic Equation_

The kinematic equations are given by
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_ =dud--_ (B6)

,,_w 037)Eo- _-

dv 038)_o = dx

13-__ dw 039)
dx

3o Cl

o=_v 0310)

_ = C2dv2dx 0311)

d[_°_ d:w
K.° = _ = - _ (B 12)

_ = 0 (B 13)

l o.d ; 'c dv_ = _w. _- _- = c_+_ 2]_-_ 0314)

where the middle-surface displacements u, v, and w; the

membrane strains E_, _, and _e ; the rotations 13_, [3_,

and [3_ ; and the bending strains K:] and K:°_eare func-

tions of only the axial coordinate, x.

Constit.u,,tive Equations

The isothermal constitutive equations reduce to

fN"tNo

•N.x.o.. =

tMfMs
Mxo

An A,2 AIrlB,, Bl= B,6
Al. A2= A_IBI2 B22 B26
A,6 A_ A_IB,. B_ B_

B,a B22 Bz6iD12 Dzl D26
Bt6 B26 B_Dt6 D26 D66

e;

._9..

0

t<.j

0315)

where the subscripted A, B, and D terms of the matrix
are the usual constitutive terms of classical Love-Kirch-

hoff-type laminated composite shell theory or classical
laminated plate theory (e.g., see p. 198 of Ref. 18).

Boundary Conditions

The boundary conditions for an edge that is defined

by a constant value of the axial coordinate x are given by

N,=N, or u=_ 0316)

N,o+I(c,+_c:)M,o=1' or v='7 0317)

Q,=_" or w = ",x, 0318)

M,=M, or _=_ (BI9)

where the applied edge displacements _, "7, and g'; the

applied edge rotation [_; and the applied edge loads lq,,

"F, V, and 1_I, are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtained

by first noting that integration of Eq. (B I) yields

N,=-f q, dx +C =-N(x) 0320)

where C is a constant of integration that is determined

from the boundary condition given by Eq. (B 16). Next,

Eqs. 032) and 035) are combined to get

dN,o l( 1 _dM_odx + c_ + _c,]--d_ + qo(x) = 0 0321)

For convenience, the parameter

IX= c_ + lc, (B22)

is introduced such that the Sanders-Koiter equations are

given by B =3 and the Love-Kirchhoff equations are

given by B = 1. Donnell's equations are given by P = 0.

Similarly, the function

"r(x) = N,o + _-M,o 0323)

is introduced so that Eq. 0321) becomes

d_ + qo(x) = 0 (B24)
dx

and the corresponding boundary condition given by Eq.

0317) becomes

_'=_" or v=7 (B25)

Integration of Eq. 0324) yields

_' = - f q, dx + C -=T(x) 0326)
J
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whereCisaconstantof integrationthatisdetermined
fromtheboundaryconditiongivenbyEq.(B25).Next,
Eqs.(B3)and(B4)arecombinedtogive

dZM. Nu
dx_ --ff+q.(x)=0 (B27)

The next step in the analysis is the simplification of

the constitutive equations. First, by using Eqs. (B8) and

(B22), Eq. (B 14) is expressed as

_]u = _-'_9 (B28)

By using Eqs. (B23) and (B28), the constitutive equa-

tions are expressed as

A_2A2, A_ B_2[/e_ _

_M,] BH B:z g,6 D. ]{)c:;

(B29)

and

_ o o oM, - B _zs_+ Buso+ 1_26_0+ D_.,n_ (B30)

where

_,6=A16+].1(h) B'6h (B31)

7(26 = A26 + I-t(h) _-_:6 (B32)

_(,,, = A,, + 21.t(h) _---_+ i.tz(h)Z D_h'-
(B33)

-if- (B34)

B_= B,6+ It(h)
Dz

- h (B35)

The motivation for writing the constitutive equations in

this form is that the matrix equation given by Eq. (B29)

is the only part of the of the full constitutive equations

that appear in the strain energy density function, which

is used in the present paper to determine the correspond-

ing positive-definiteness conditions. With these simpli-

fied constitutive equations and Eqs. (B6) - (B8) and

(B 12), Eq. (B20) is expressed as

A du dV_B d"w
. dx +A,2_ +A,_ dx . -d-_ - N(x) = 0 (B36)

and Eq. (B26) is expressed as

,,du . x- w ._ dv _ d"W_T(x)=0 (B37)

du
Equations (B36) and (B37) are then solved for _- and

dv
to get

du = N,,,N(x) - N,6T(x)
dx A ,,_,. - _]_

+ A,,_,,- X_,,
(B38)

dv _ A .T(x) - N,_(x)
dx A.?.6.- :V,..

w _ A,,B,,)_d_(A,:7(,.- A.N 2.)_- + (A ,,g,. - d:w

+ A,,N_- N',, (B39)

Equation (B39) indicates that the circumferential dis-

placement v(x) becomes uncoupled from the axial dis-

placement u(x) and the normal displacement w(x)

when _(,_=7(z=1_,6=0, which implies that Al6 = A26

= B16 = B26 = DI6 = 0. In addition, the constitutive equa-

tion, Eq. (B29), indicates that N_, N 0, and M_ become

uncoupled from the torsional, shear strain _0 when

_6=_._=]_,6=0, and that "r, that is defined by Eq.

(B23), becomes uncoupled from 8_, 8], and _:o Fur-

thermore, Eq. (B30) indicates that M 0 becomes uncou-

pled from _ when 1_.6= 0, which implies Bz6 = D_6 =

0.

Next, Eqs. (B38) and (B39) are then substituted

into Eqs. (B6) and (B8), and the resulting expressions for

e_ and _, along with Eqs. (B7) and (B 12) are Substitut-

ed into the constitutive equations, (B29). This action

converts the strains and stress resultants in Eq. (B29) into

functions of the displacement w(x). Substituting the ex-

pressions for N o and M_ into Eq. (B27) yields the bend-

ing boundary-layer equation that is given by

C d_w C d"w
'-_-_+ _dx: +C,w=C,(x) (B40)

The constant coefficients are given by
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C,= D,f I 7(.BI, + A,,I]_,. - 2_..B.g. _

C2 = - _B ,2

(B41)

(B42)

0343)

The function Cdx) is given by

C4(x) = q.(x) +

(X._:.- A._.)lq(x)+ (A.X,o- A.X,.IT(x)

+ (A.N.- N'.) 0344)

These expressions are simplifed further by introducing

the following expressions

0345)
(A .,A ::- A'.:}_._ - A ,,X;.- A,:]K',. + 2A ,:]_ ,d!_

1

0346)
(A,,A_-A',=IX_- A,,]K_- A,_.zX],+ 2A ,:]K,d_,

l

A,,]K,.- A,,_

[A .Au- A],/X_ - A .X_ - A=2Xz,,+ 2A ,,_ ,d_2.
!

0347)

6:,=-(a03,, + a_B,, + a,_o) 0348)

X _,B:. + A ,,B2L6-2X ,J3 ,tl_,_
e = 1 - (B49)(A,::

By using Eqs. 0345) - 0349), Eqs. 0341) - 0343) are

expressed as

C, = D.e 0350)

2 1):, 0351)
C2 - R fin

= I 0352)
C, R'a2_

Similarly, for the case where the second derivatives of

lq'(x) and T(x) are zero valued, Eq. 0344) becomes

a.N(x) + a.,6T(x)
Cdx) = q,(x) + 0353)

Ran

The desired form of the bending boun'dary-layer equa-

tion is obtained by dividing Eq. 0340) by C_; that is,

d'wdx----7 + 4S + 4Qw = P(x) 0354)

where the constants S and Q are given by

S C2 B,, 0355)
4C, 2R_.::D_e

C3 1
- 0356)

Q = 4C_ 4R:fi2_D.e

The function P(x) is given by

P(x) - C,(x) _ q,(x____)+ a,2N(x) + a_6T(x) 0357)
C, D.e Rfi22DI,c

for the special case when the second derivatives of

N(x) and T(x) are zero valued. The quantity D,,e that

appears in Eqs. 0354) - 0356) is sometimes referred to,

in some contexts, as a reduced bending stiffness) 2

Appendix C; Anisotropy-Factor Eckuatio_n_.

The first-order approximation of the anisotropy

factor "4 that is used herein is given by

(c1)

where ,40 is the value of Eq. (20b) with gt = 0 in the

terms with the overbars. This expression is given by

,40- [ A. a.,:eo

which is the anisotropy factor that corresponds to Don-

nell's equations. The terms %2, b2t, and •0 are given by
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A ,_A:.-A .A_

a': (A,,A, _ A_ )A,,+_ A ,,A] _ A_A,,+ + 2A,,A,,,A2+
(C3)

A.A,.- A'+
az2

(A,,A z2- A_,2/A,.+- A ,,AZ,+- A :_A]+ + 2A ,,A,+A,+
i, /

(C4)

a26=( ) . A,,A]+A,,A,,- A], A_- A.A'.+- + 2A ,:A,_:+
(C5)

b z, = - (a,2B, + a22BI: + a..,J3,_) (C6)

A_, + A,,Bk- 2A,&,B,+

e0 =1- (A,,A _A20D,, (C7)

The term C] is a first-order correction to the results that

correspond to Donnell's equations and is given by

e,=_(.._.., +a,2..0+2a4b,2+°-b,,,,)-2.._b,+°
4a2.¢o[_- bz,] (C8)

where

2(m 16 B ll-- A ,,BI6 ) [D [ A ,lA66 - A ]6) q"

B 16f,6+ B _d':6+ B _f_

a112 _ l

A A A A A A A +2A A hn 2:- l: _- n _- a2AI6 _z t_26

aln = - 2 B jdll6 + B2_g_,+ Br_g_

h2 2 ,A nA_ - A 12)A_- A nA_- A:2A_6 + 2A l:A ibA z6

B +6h ,6+ B;c_h z6+ Bb6h m

at,_ = ) A llA_6- A2aA]6 2A 12(A ,,A,+ 2 - A]:_A e- + ,,A ,+Az6
h

b+=-(a,,+,t+a,+,++a,+,,+++)
and

f,°=A++(A>,_-A,,A::°)+

(C9)

(cto)

(C 11)

(C12)

(C13)

(C14)

+.,.,:,,+(A+':,,a,,-_.::a+-,+)+

A +[A ,+(A,,A_a+ A",,)- 2A ,,AuA.,+ (CI5)

f+=

++=

++: +"

+ A,_+_++(AI.+Am- A,,A:6) (C20)

+ A,,A:+(2A,+A,+-A.A:6) (C21>

h++= 2(A,,A:+-A,:A,+)(A.A.+-A:,+) (C22)

Special Cases for _,

Simplifications to -40 and el are presented below

for unbalanced and balanced, symmetric laminates and

for balanced, unsymmetric laminates, that include the

subclasses of general antisymmetric laminates, antisym-

metric cross-ply laminates, and antisymmetric angle-ply

laminates.

Unbalanced and balanced, symmetric laminates.

For unbalanced, symmetric laminates, At6 ¢: 0, A26 :;/: 0,

and B n = Bl, = B22 = BI6 = B26 = B66 = 0. For this special

case,

=I 1+

which agrees with the corresponding equations given by

Reuter _, and

D t6(Ai2Ai6 -Alt A :6) It
e, = r . 'ml[A "A:':' - A]2) A66
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-1/2.- A t_A_- A 22A]_ + 2A _2At.A :_ (C24)

For balanced, symmetric laminates, A_ = A,_ = 0 in

addition to the subscripted B-matrix constitutive terms.

For this special case,4) = 1 and Ci = 0.

Balanced, un_;ymmetri¢ laminates. For balanced,

unsymmetric laminates, AI6 = A26 = 0, which yields the

following simplified expressions

B:,, B",,
eo = I A.D,, A_Dt, (C25)

A = A.B 12- A _. (C26)

4 A,,D.(A,,A2,- A]2)eo

,4'0 = _0 [1 + A]-'_ (C27)

B,6 [D,6 B,,B,, B,_

el =-2 AJ'I[D. At,D n A_D.
(c28)

1
2B,_(A.B_- A IIB,6) [

(C29)

For the subclass of balanced, antisymmetric laminates,

Dl6 = D26 = 0 in addition to the shear-extensional cou-

pling terms, which yields the following simplification

et- A_),lh [A,,
(c30)

that is applied to Eq. (C29). For the subclass of (bal-

anced) antisymmetric cross-ply laminates, B_2 = B,6 =

B26 = B66 = 0 , B22 = -B n, and DI6 = D26 = 0 in addition

to the shear-extensional coupling terms. For this special

case, CI = 0 and

4 A 12B l_

,..40= 1 - --A.D,,(A.A22- A-Oeo (C31)

where

eo= 1 AxtD, (C32)

For the subclass of balanced, antisymmetric angle-

ply laminates, Bl_ = Bt2 = B22 = B_ = 0 and Dl6 = D,6 =

0 in addition to the shear-extensional coupling terms.

For this special case, .,4,)= _,, where

B_

eo = 1 A_6Dt, (C33)

which agrees with the corresponding equations given by

Reuter 4, and

B_(A tzB26- A _:B,_)

C_ = 2A_h4 A,D.(A,tA:2_ A.,.,)e0 (C34)

Further simplifications can be made to Eqs. (C31)

and (C32) for [0/901.../90] antisymmetric-cross-ply-
laminate shell walls with an even number of layers that

have identical material properties. For these laminates,

the plies are specially orthotropic and their principal ma-

terial directions are oriented at 0 deg and 90 deg to the

cylinder axes in an alternating manner. In particular, the

major principal axes of the odd-numbered and even-

numbered plies are aligned with the x- and 0-axis, re-

spectively, with the first ply in the stacking sequence lo-

cated at the inner surface of the cylinder. Moreover, the

odd-numbered plies have the same thickness and the

even-numbered plies have the same thickness, but these

two thicknesses are, in general, different. The laminate

stiffnesses are given in Ref. 18 (see pp. 224-226) in terms

of the number of layers N, the thickness ratio M, the ratio

E2
of the principal elastic moduli F = E-_ ' for which 0 < F

< 1, and the reduced, plane-stress lamina stiffnesses.

The thickness ratio is defined by

tit)
M= _ t<,,+ _ t,,,=_ (C35)

k:l, 3.... k=_4 ....

where tc_) denotes the thickness of the k thply and

h= _ t,,,4" ._ t_,,=N(t,,+t,2,) (C36)
k_l,3 .... k _ ,.,

is the total laminate thickness. For the antisymmetric

cross-ply laminates, tt__and te)are the thicknesses of the

0-deg and 90-deg layers, respectively, and are denoted

herein by to and _, respectively. Substituting the non-

zero laminate stiffness expressions for this class of anti-

symmetric cross-ply laminates that are given in Ref. 18

into Eqs. (2 I), (C31), and (C32) yields
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l I U4

[ 1 - ( 1 - F)QI(M + I)(M + F)

O= (M+F)(1 +MF)-[(I +M)Fv,:]-" (C37)

1d-f7 MF(I - F) vt2
,,40 = 4 I + NE (C38a)

where

Y. = [[1 - (I - F)Q](M + I)(M + F)x

{(M + F)(I + MF) - [(M + l)Fv ,:]2 }e0] '_" (C38b)

12M2( 1 - F')2
e0= 1 N2(M + I)'(M+F)[I -(1 -F)Q] (C39)

_ 1 8M(M - 1)
Q - _ + NZ(M + i)3 (C40)

and v12 is the major Poisson's ratio. For the special, but

practical, case of regular antisymmetric cross-ply lami-

nation, all plies have the same thickness and Eqs. (C37)
- (C39) reduce to

[ -/ 2Fv'2/21O= 1 kl+Fl] (C41)

N(I + F)4[(1 +F) - (2Fv,_) ],o (C42)

3 (1 -F] z
eo = 1 - _ !, 1 + F) (C43)
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Table h Lamina properties.

- S-glass- Ke_iar49-1 IM71 AS4/ AS_ Bor0n; I IM7! I P-100/_l

__ .....................33 "_-ep°xy l7.5 'epoxy11._02L---. _2 526022 .1 350218.5 3501-620-----.01 _Liepoxy J....._-29 .58 PETI:5 3502 I201'_i.35 i_l ..... 53 .5 ....

21 1.7 0.8 1.457 1.64 1.30 2.68 I 1.16 0.73
,

0.23 0.25 0.34 0.258 0.30 0.30 0.23 I 0.29 0.31

I
7.0 0.80 0.33 0.860 0.87 1.03 0.81 [ 0.61 0.76

.......... + ..............

3.2 3.5 -2.22 0.0125 0.25 -0.167 3.38 t -0.I4 -0.64

11.0 11.0 43.89 14.91 16.2 15.6 16.83 [ 16.85 17.2
I

* The subscripts 1 and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropie lamina, respectively.

Table 2: Comparison of results for specially orthotropic materials with Ref. 6.

R,C'p), R,(p),
Ref. C

v,_ , i 0

0.30 1.782

0.25 1.323

0.25 2.516

Present study*

0.100 2.796-2.805 2.806

0.333 3.757-3.779 3.779

0.250 1.984-1.987 1.987

* The subscripts 1 and 2 denote the major and minor principal directions, respectively, of the specially orthotropic materials defined
in Ref. 6.

+ The quantity Re (,_] is defined by Eq. (37).
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Fig. 3 Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homogeneous,
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Fig. 18 Effect of lamina material properties on nondimensional anisotropy parameter for [0p/90q]T laminates.
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Fig. 19 Nondimensional 90%.decay length for [0p/90q] T laminates made ofIM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20).
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Fig. 20 Effect of lamina material properties on nondimensional orthotropy parameter for [70p/0q] T laminates.
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Fig. 21 Effect of lamina material properties on nondimensional anisotropy parameter for [70p/Oq]T laminates.
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Fig. 22 Nondimensional 90%-decay length for [70p/0q]T laminates made of 1_[7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20).

32

American Institute of Aeronautics and Astronautics


